How to Model Periodicity in Microfluidic Systems

In microfluidic systems, fluid flow is always laminar. This is both a benefit and a burden — a benefit because the flow field is stationary, and a burden because species mixing occurs primarily by diffusion, which can be time-consuming. A simple way to mix chemical species in a microfluidic chip is to use a serpentine channel…

Tracking Eigenmodes over Parameter Sweeps

Eigenfrequency analysis is an integral part of the numerical modeling toolkit. The eigenmodes of a linear system often have distinct qualitative characteristics and evolve differently over a parameter range, such as frequency. We are often asked if there is a way to keep track of and categorize these families of eigenmode solutions over the parameter sweep….

Modeling the Differential Quenching of a Katana

The katana is a legendary sword used by the samurai several hundred centuries ago. It is perhaps most recognizable for its curved shape and its remarkably sharp single edge. In this blog post, we will go over how to build a simple model of a katana using the COMSOL Multiphysics® software and simulate a differential hardening process to…

Semiconductor Manufacturing Models

To demonstrate how the COMSOL Multiphysics® software can be used for modeling semiconductor manufacturing equipment, processes, and devices, we create example models and other guides on a regular basis. Browse example models and see suggested add-on modules in this resource collection. Read more

Structural Contact Modeling Guideline

Structural contact modeling is a highly nonlinear problem. As surfaces come in and out of contact, load paths and stress states will abruptly change. The computational solvers in the COMSOL Multiphysics® software are designed to work with sufficiently smooth solutions, so solving such models is inherently challenging. To efficiently achieve a converged solution, most contact models will require…

Design and Customization of Composite Materials Using a Simulation App

Composites are widely used in industrial applications. Compared to the traditional monolithic materials, composites can have specialized material properties due to the customization of constituents, making them versatile and applicable to many different industries, such as in areas like aerospace engineering and biomedical engineering. Homogenization techniques are needed to numerically compute the material properties of composites…

Taking a Closer Look at MEMS Technology with COMSOL Multiphysics®

When you speak up in a virtual meeting, recite voice commands into smart devices, or talk over the phone, there’s a good chance it’s MEMS technology that picks up your voice. This is due to the frequent use of this solid-state semiconductor technology in creating small speakers that produce high-quality sound. In this blog post, we…

Modeling the Speed and Stealth of the Darkstar

I watched the latest Top Gun movie, Top Gun: Maverick a few weeks ago. It is a really awesome movie, and it is also cutting edge from an engineering standpoint. The movie starts with Maverick, played by Tom Cruise, working as a test pilot preparing to fly a new secretly developed airplane, the Darkstar, capable of flying Mach 10. Simultaneously,…

Examining an Air Filter with a RANS Turbulence Model

HVAC systems do more than provide the smooth, chilled air that flows when the temperature outside rises. Within these systems, air moves through filters to ensure high air quality. With clean air at stake, modeling and simulation can be used to gain an in-depth understanding of the physics behind the behavior of air as it moves…