COMSOL Learning Center

Check out the new COMSOL Learning Center! You’ll find multipart courses, articles, videos, modeling exercises, model files, and step-by-step instructions — all designed to help you get the most out of the COMSOL® software! Read more

Using Different Physics Interfaces for RF Electromagnetic Heating Models

The COMSOL Multiphysics® software is well suited for modeling RF heating, where one needs to solve for both the electromagnetic fields and the temperature distribution over time. Although you might think that you need the RF Module for all types of problems involving RF heating, you can often use either the RF Module or the AC/DC Module, and you can use several…

Generating a Simulation Mesh of a Femur From 3D Data

Have you ever wondered how to create a simulation mesh out of data obtained by 3D imaging techniques? In this blog post, we will explain how to do so using the COMSOL Multiphysics® software. This topic expands on the theme of modeling irregular shapes, which we have explored in past blog posts. The processes we will discuss here are,…

Performing Topology Optimization with Milling Constraints

Topology optimization is associated with extreme design freedom and thus extreme performance, but the resulting designs are often incompatible with conventional manufacturing techniques. The development of manufacturing constraints for topology optimization is an active research topic. The COMSOL Multiphysics® software supports milling constraints, and in this blog post we will explain how to use such functionality and show examples.

The Intriguing Stresses in Pipe Bends

For many structural engineers, beam theory is a popular analysis tool. Using the equations can be beneficial when considering structural behavior, as they are easy to apply and provide useful results. However, it’s also known that due to the simplicity and convenience, beam theory is applied even when some underlying assumption may not hold up too well. This blog post…

4 Examples of Fuel Cell Modeling in COMSOL Multiphysics®

Fuel cells are one of the most talked about new technologies in the clean energy domain. Fuel cells generate electricity via electrochemical reactions involving hydrogen and oxygen, where the sum reaction yields hydrogen oxidation and oxygen reduction. Simply put, if a fuel cell has a steady supply of hydrogen and oxygen, it will generate electricity. Furthermore, the byproduct generated in…

Modeling the Pulsed Laser Heating of Semitransparent Materials

It’s quite common to use focused laser light to rapidly heat materials for various purposes, including within the semiconductor processing industry. Here, we will look at a Gaussian profile laser beam with periodically pulsed intensity, heating up two different semitransparent materials deposited onto a silicon substrate. To model this, we will solve a multiphysics modeling problem using the temperature field…

How Decaying Shells Help Preserve the Alkalinity of the Seas

Calcium carbonates produced by sea creatures help to maintain the ocean’s alkalinity — and also serve as a natural sink for anthropogenic carbon dioxide. To better understand essential but obscure deep-sea galvanization processes, Olivier Sulpis of Utrecht University developed an innovative 3D reactive-transport model that shows how seashells help preserve calcite grains in seafloor sediments. Read…

Shape Optimization in Electromagnetics: Part 1

Shape optimization can be used to improve designs in many different physics areas. In this blog post, we will focus on shape optimization in wave optics. We will go over the shape optimization features in the COMSOL Multiphysics® software and show what you can expect to achieve when these features are used for wave optics applications. Read…

Major News in COMSOL Multiphysics® Version 6.1

COMSOL Multiphysics® version 6.1 introduces new functionality for detached eddy simulation, thermal analysis of satellites, winding layouts for electric motors, and robust mechanical contact. A new interface enables the analysis of battery packs with several hundred cells. Simulation of acoustically driven flows is made possible by a new acoustic streaming interface. New mesh repair tools for the handling of misaligned models provide…